Sialidosis and galactosialidosis: chromosomal assignment of two genes associated with neuraminidase-deficiency disorders.

نویسندگان

  • O T Mueller
  • W M Henry
  • L L Haley
  • M G Byers
  • R L Eddy
  • T B Shows
چکیده

The inherited human disorders sialidosis and galactosialidosis are the result of deficiencies of glycoprotein-specific alpha-neuraminidase (acylneuraminyl hydrolase, EC 3.2.1.18; sialidase) activity. Two genes were determined to be necessary for expression of neuraminidase by using human-mouse somatic cell hybrids segregating human chromosomes. A panel of mouse RAG-human hybrid cells demonstrated a single-gene requirement for human neuraminidase and allowed assignment of this gene to the (pter----q23) region of chromosome 10. A second panel of mouse thymidine kinase (TK)-deficient LM/TK- -human hybrid cells demonstrated that human neuraminidase activity required both chromosomes 10 and 20 to be present. Analysis of human neuraminidase expression in interspecific hybrid cells or polykaryocytes formed from fusion of mouse RAG (hypoxanthine/guanine phosphoribosyltransferase deficient) or LM/TK- cell lines with human sialidosis or galactosialidosis fibroblasts indicated that the RAG cell line complemented the galactosialidosis defect, but the LM/TK- cell line did not. This eliminates the requirement for this gene in RAG-human hybrid cells and explains the different chromosome requirements of these two hybrid panels. Fusion of LM/TK- cell hybrids lacking chromosome 10 or 20 (phenotype 10+,20- and 10-,20+) and neuraminidase-deficient fibroblasts confirmed by complementation analysis that the sialidosis disorder results from a mutation on chromosome 10, presumably encoding the neuraminidase structural gene. Galactosialidosis is caused by a mutation in a second gene required for neuraminidase expression located on chromosome 20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of human lysosomal neuraminidase defines the molecular basis of the metabolic storage disorder sialidosis.

Neuraminidases (sialidases) have an essential role in the removal of terminal sialic acid residues from sialoglycoconjugates and are distributed widely in nature. The human lysosomal enzyme occurs in complex with beta-galactosidase and protective protein/cathepsin A (PPCA), and is deficient in two genetic disorders: sialidosis, caused by a structural defect in the neuraminidase gene, and galact...

متن کامل

Systemic and neurologic abnormalities distinguish the lysosomal disorders sialidosis and galactosialidosis in mice.

Neuraminidase initiates the hydrolysis of sialo-glycoconjugates by removing their terminal sialic acid residues. In humans, primary or secondary deficiency of this enzyme leads to two clinically similar neurodegenerative lysosomal storage disorders: sialidosis and galactosialidosis (GS). Mice nullizygous at the Neu1 locus develop clinical abnormalities reminiscent of early-onset sialidosis in c...

متن کامل

Novel mutations in lysosomal neuraminidase identify functional domains and determine clinical severity in sialidosis.

Lysosomal neuraminidase is the key enzyme for the intralysosomal catabolism of sialylated glycoconjugates and is deficient in two neurodegenerative lysosomal disorders, sialidosis and galactosialidosis. Here we report the identification of eight novel mutations in the neuraminidase gene of 11 sialidosis patients with various degrees of disease penetrance. Comparison of the primary structure of ...

متن کامل

Neu4, a novel human lysosomal lumen sialidase, confers normal phenotype to sialidosis and galactosialidosis cells.

Three different mammalian sialidases have been described as follows: lysosomal (Neu1, gene NEU1), cytoplasmic (Neu2, gene NEU2), and plasma membrane (Neu3, gene NEU3). Because of mutations in the NEU1 gene, the inherited deficiency of Neu1 in humans causes the severe multisystemic neurodegenerative disorder sialidosis. Galactosialidosis, a clinically similar disorder, is caused by the secondary...

متن کامل

A point mutation in the neu-1 locus causes the neuraminidase defect in the SM/J mouse.

Lysosomal neuraminidase (sialidase) occurs in a high molecular weight complex with the glycosidase beta-galactosidase and the serine carboxypeptidase protective protein/cathepsin A (PPCA). Association of the enzyme with PPCA is crucial for its correct targeting and lysosomal activation. In man two genetically distinct storage disorders are associated with either a primary or a secondary deficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 83 6  شماره 

صفحات  -

تاریخ انتشار 1986